Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxics ; 12(2)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38393249

RESUMO

In this study, 245 representative samples of aquatic products were selected from local markets in Shenzhen by stochastic sampling. The samples comprised eight species and fell into three aquatic product categories: fish, crustaceans, and bivalves. A total of eight BPs were determined by liquid chromatography coupled with mass spectrometry, namely, bisphenol A (BPA), bisphenol AF (BPAF), bisphenol AP (BPAP), bisphenol B (BPB), bisphenol S (BPS), bisphenol P (BPP), bisphenol Z (BPZ), and bisphenol F (BPF). All BPs were detected in aquatic products, except for BPAF, indicating pervasive contamination by BPs in aquatic products. BPS demonstrated the highest detection rate both before and after enzymatic hydrolysis, whereas BPAP exhibited the lowest detection rate before enzymatic hydrolysis and BPB displayed the lowest detection rate after enzymatic hydrolysis. The concentration difference before and after enzymatic hydrolysis proved to be statistically significant. Moreover, 49-96% of BPs in aquatic products were found in the combined state, underscoring the essentiality of conducting detections on aquatic product samples following enzymatic hydrolysis. While the health risks associated with ingesting BPs residues through aquatic product consumption were found to be minimal for residents at risk of exposure, the results suggest the necessity for more stringent regulations governing the consumption of aquatic products.

2.
Mikrochim Acta ; 191(1): 37, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110783

RESUMO

Carbon-coated copper nanocrystals (CuNCs) with peroxidase-like activity were hydrothermally prepared by using copper acetate, citric acid (CA) and histidine (His) as the precursors. Various shaped CuNCs, including urchin-like, slab-like and spherical appearance were facilely prepared by addition of different amount of NaNO2 in the precursor solutions. When 3,3',5,5'-tetramethylbenzidine (TMB) was used as the substrate, the CuNCs with urchin-like appearance have greatest peroxidase-like activity and their Michaelis-Menten constant (Km) and the maximum rate constant (νmax) are respectively 8.8 and 1.2 times higher than that obtained from horseradish peroxidase (HRP). The production of reactive oxygen species (ROS) was confirmed by radical quenching and electron spin resonance (ESR) tests. Subsequent studies have found that the CuNCs catalyzed color reaction of TMB can be selectively quenched by the environmental pollutant 2,4-dinitrophenylhydrazine (2,4-DNPH). Thus a new colorimetric method for the determination of 2,4-DNPH with a linear range of 0.60-20 µM was developed and a limit of detection (LOD) as low as 0.166 µM was achieved. The results obtained not only reveal the tunability of the peroxidase-like activity of Cu-based nanomaterials, but also provide a new method for the sensitive determination of environmental contaminate.


Assuntos
Materiais Biomiméticos , Nanopartículas , Peroxidase/química , Cobre/química , Carbono/química , Colorimetria/métodos , Peróxido de Hidrogênio/química , Materiais Biomiméticos/química , Nanopartículas/química
3.
J Mater Chem B ; 11(12): 2770-2777, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36883554

RESUMO

Iridium nanoparticles with an average size of 1.7 nm (Tar-IrNPs) were synthesized by the reduction of IrCl3 with NaBH4 in the presence of tartaric acid. As prepared Tar-IrNPs showed not only oxidase, peroxidase and catalase activities but also exhibited unprecedented laccase-like activity, which can catalyze the oxidation of the substrates o-phenylenediamine (OPD) and p-phenylenediamine (PPD) accompanied by significant color changes. The superb catalytic performance is evidenced by the fact that Tar-IrNPs can achieve better laccase-like activity with only 2.5% of the dosage of natural laccase. Furthermore, they also exhibited superior thermal stability and broader pH adaptability (2.0-11) over that of natural laccase. Tar-IrNPs can retain more than 60% of their initial activity at 90 °C, while the natural laccase has totally lost its activity at 70 °C. At a prolonged reaction time, the oxidation products of OPD and PPD can form precipitates due to oxidation induced polymerization. Thus Tar-IrNPs have been successfully used for the determination and degradation of PPD and OPD.


Assuntos
Lacase , Nanopartículas , Lacase/metabolismo , Irídio , Peroxidases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...